Monday, December 08, 2014

Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection

Nowadays hybrid spin-micro/nanomechanical systems are being actively explored for potential quantum sensing applications. In combination with the pump-probe technique or the spin resonance spectrum, we theoretically propose a realistic, feasible, and an exact way to measure the cantilever frequency in a hybrid spin-micromechanical cantilever system which has a strong coherent coupling of a single nitrogen vacancy center in the single-crystal diamond cantilever with the microcantilever. The probe absorption spectrum which exhibits new features such as mechanically induced three-photon resonance and ac Stark effect is obtained. Simultaneously, we further develop this hybrid spin-micromechanical system to be an ultrasensitive mass sensor, which can be operated at 300 K with a mass responsivity 0.137 Hz ag −1 , for accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules. And the best performance on the minimum detectable mass can be ##IMG##

Wen-Hao Wu and Ka-Di Zhu

Click for full article

No comments:

Post a Comment